Advertisement

Synthetic Cathinones (“Bath Salts”)

Published:February 24, 2014DOI:https://doi.org/10.1016/j.jemermed.2013.11.104

      Abstract

      Background

      Synthetic cathinones are popularly referred to in the media as “bath salts.” Through the direct and indirect activation of the sympathetic nervous system, smoking, snorting, or injecting synthetic cathinones can result in tachycardia, hypertension, hyperthermia, myocardial infarction, and death.

      Objective

      The chemical structures and names of bath salts identified by the Ohio Attorney General's Bureau of Criminal Investigation are presented. Based on their common pharmacophores, we review the history, pharmacology, toxicology, detection methods, and clinical implications of synthetic cathinones. Through the integration of this information, the pharmacological basis for the management of patients using synthetic cathinones is presented.

      Discussion

      Synthetic cathinones activate central serotonergic and dopaminergic systems contributing to acute psychosis and the peripheral activation of the sympathetic nervous system. The overstimulation of the sympathetic nervous system contributes to the many toxicities reported with bath salt use. The pharmacological basis for managing these patients is targeted at attenuating the activation of these systems.

      Conclusions

      Treatment of patients presenting after using bath salts should be focused on reducing agitation and psychosis and supporting renal perfusion. The majority of successfully treated synthetic cathinones cases have used benzodiazepines and antipsychotics along with general supportive care.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Emergency Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Edeleano L.
        Ueber einige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure.
        Berichte der deutschen chemischen Gesellschaft. 1887; 20: 616-622
        • Friedenberg S.
        Addiction to amphetamine sulfate.
        JAMA. 1940; 114: 956
      1. Morimoto K. The problem of the abuse of amphetamines in Japan. 1957. 8−12. Available at: http://www.unodc.org/unodc/en/data-and-analysis/bulletin/bulletin_1957-01-01_3_page003.html. Accessed June 2013.

        • Goto A.
        Personal and social factors in connection with the etiology of amphetamine addiction.
        Folia Psychiat Neurol Jap Suppl. 1963; 7: 376-377
        • Ellinwood E.
        Amphetamine and stimulant drugs.
        in: Drug Use in America: Problem in Perspective. US Government Printing Office, Washington, DC1973: 140-157
        • Gaston T.
        • Rasmussen G.
        Identification of 3,4-methylenedioxymethamphetamine.
        Microgram. 1972; 5: 60-63
        • Freudenmann R.W.
        • Oxler F.
        • Bernschneider-Reif S.
        The origin of MDMA (ecstasy) revisited: the true story reconstructed from the original documents.
        Addiction. 2006; 101: 1241-1245
        • Shulgin A.T.
        Characterization of three new psychotomimetics.
        in: Stillman R.C. Willette R.E. The Psychopharmacology of Hallucinogens. Pergamon, New York1978: 74-83
        • Kramer J.
        • Fischman V.S.
        • Littlefield D.C.
        Amphetamine abuse: pattern and effects of high doses taken intravenously.
        JAMA. 1967; 201: 305-309
        • Lawn J.
        Schedules of controlled substances: temporary placement of 3,4-methylenedioxymethamphetamine (MDMA) into Schedule I.
        Fed Regist. 1985; 50: 23118-23120
        • Hyde J.F.
        • Browning E.
        • Adams R.
        Synthetic homologs of d,l-ephedrine.
        J Am Chem Soc. 1928; 50: 2287-2292
        • Cozzi N.V.
        • Sievert M.K.
        • Shulgin A.T.
        • Jacob III, P.
        • Ruoho A.E.
        Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines.
        Eur J Pharmacol. 1999; 381: 63-69
        • Glennon R.A.
        Stimulus properties of hallucinogenic phenalkylamines and related designer drugs: formulation of structure-activity relationships.
        NIDA Res Monogr. 1989; 94: 43-67
        • Braun U.
        • Shulgin A.T.
        • Braun G.
        Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine).
        J Pharm Sci. 1980; 69: 192-195
        • Dal Cason T.
        Cathinone: an investigation of several N-alkyl and methylenedioxy-substituted analogs.
        Pharmacol Biochem Behav. 1997; 58: 1109-1116
        • Glennon R.A.
        • Yousif M.
        • Naiman N.
        • Kalix P.
        Methcathinone: a new and potent amphetamine-like agent.
        Pharmacol Biochem Behav. 1987; 26: 547-551
        • Nagai F.
        • Nonaka R.
        • Satoh K.
        • Kamimura H.
        The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain.
        Euro J Pharmacol. 2007; 559: 132-137
        • Kehr J.
        • Ichinose F.
        • Yoshitake S.
        • et al.
        Mephedrone, compared to MDMA (Ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in the nucleus accumbens of awake rats.
        Br J Pharmacol. 2011; 164: 1949-1958
        • Rothman R.
        • Baumann M.
        • Dersch C.
        • et al.
        Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin.
        Synapse. 2001; 39: 32-41
        • Rothman R.B.
        • Vu N.
        • Partilla J.S.
        • et al.
        In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates.
        J Pharmacol Exp Ther. 2003; 307: 138-145
        • Baumann M.H.
        • Partilla J.S.
        • Lehner K.R.
        • et al.
        Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive “bath salts” products.
        Neuropsychopharmacology. 2013; 38: 552-562
        • Bonci A.
        • Bernardi G.
        • Grillner P.
        • Mercuri N.B.
        The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction?.
        Trends Pharmacol Sci. 2003; 24: 172-177
        • Baumann M.H.
        • Ayestas M.A.
        • Partilla J.S.
        • et al.
        The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue.
        Neuropsychopharmacology. 2012; 37: 1192-1203
        • Boyer E.W.
        • Shannon M.
        The serotonin syndrome.
        N Engl J Med. 2005; 352: 1112-1120
        • Wee S.
        • Anderson K.G.
        • Baumann M.H.
        • Rothman R.B.
        • Blough B.E.
        • Woolverton W.L.
        Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs.
        J Pharmacol Exp Ther. 2005; 313: 848-854
        • Dargan P.I.
        • Sedefov R.
        • Gallegos A.
        • Wood D.M.
        The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone).
        Drug Test Anal. 2011; 3: 454-463
        • Caffery T.M.
        • Musso M.
        • Manausa R.
        • Everett J.
        • Perret J.
        Riding high on cloud 9.
        J La State Med Soc. 2012; 16: 186-189
        • Penders T.M.
        How to recognize a patient who's high on “bath salts.”.
        J Fam Pract. 2012; 61: 210-212
        • Spiller H.A.
        • Ryan M.L.
        • Weston R.G.
        • Jansen J.
        Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States.
        Clin Toxicol (Phila). 2011; 49: 499-505
        • Murray B.L.
        • Murphy C.M.
        • Buehler M.C.
        Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV).
        J Med Toxicol. 2012; 8: 69-75
        • Young A.C.
        • Schwarz E.S.
        • Velez L.I.
        • Gardner M.
        Two cases of disseminated intravascular coagulation due to “bath salts” resulting in fatalities, with laboratory confirmation.
        Am J Emerg Med. 2013; 31: e443-e445
        • Lange R.A.
        • Cigarroa R.G.
        • Flores E.D.
        • et al.
        Potentiation of cocaine-induced coronary vasoconstriction by beta-adrenergic blockade.
        Ann Intern Med. 1990; 112: 897-903
        • Smith C.
        • Cardile A.P.
        • Miller M.
        Bath salts as a “legal high.”.
        Am J Med. 2011; 124: e7-e8
        • Warrick B.K.
        • Hill M.
        • Hekman K.
        • et al.
        A 9-state analysis of designer stimulant, “bath salts,” hospital visits reported to poison control centers.
        Ann Emerg Med. 2013; 62: 244-251
        • Borek H.A.
        • Holstege C.P.
        Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methylenedioxypyrovalerone.
        Ann Emerg Med. 2012; 60: 103-105
        • Gowing L.R.
        • Henry-Edwards S.M.
        • Irvine R.J.
        • Ali R.L.
        The health effects of ecstasy: a literature review.
        Drug Alcohol Rev. 2002; 21: 53-63
        • Pedersen N.P.
        • Blessing W.W.
        Cutaneous vasoconstriction contributes to hyperthermia induced by 3,4-methylenedioxymethamphetamine (Ecstasy) in conscious rabbits.
        J Neurosci. 2001; 21: 8648-8654
        • Mills E.
        • Rusyniak D.
        • Sprague J.E.
        The role of sympathetic nervous system and uncoupling proteins in the thermogenesis induced by 3,4-methylenedioxymethamphetamine.
        J Mol Med. 2004; 82: 787-799
        • Kuusela P.
        • Rehnmark S.
        • Jacobsson A.
        • Cannon B.
        • Nedergaard J.
        Adrenergic stimulation of lipoprotein lipase gene expression in rat brown adipocytes differentiated in culture: mediation via beta3- and alpha1-adrenergic receptors.
        Biochem J. 1997; 321: 759-767
        • Zhao J.
        • Cannon B.
        • Nedergaard J.
        Alpha1-adrenergic stimulation potentiates the thermogenic action of beta3-adrenoreceptor-generated cAMP in brown fat cells.
        J Biol Chem. 1997; 272: 32847-32856
        • Himms-Hagen J.
        • Cerf J.
        • Desautels M.
        • Zaror-Behrens G.
        Thermogenic mechanisms and their control.
        Exp Suppl. 1978; 32: 119-134
        • Echtay K.S.
        • Winkler E.
        • Frischmuth K.
        • Klingenberg M.
        Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquione).
        Proc Natl Acad Sci U S A. 2001; 98: 1416-1421
        • Brand M.D.
        • Esteves T.C.
        Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3.
        Cell Metab. 2005; 2: 85-93
        • Rusyniak D.E.
        • Sprague J.E.
        Toxin-induced hyperthermic syndromes.
        Med Clin North Am. 2005; 89: 1277-1296
        • Mugele J.
        • Nanagas K.A.
        • Tormoehlen L.M.
        Serotonin syndrome associated with MDPV use: a case report.
        Ann Emer Med. 2012; 60: 100-102
        • Levine M.
        • Levitan R.
        • Skolnik A.
        Compartment syndrome after “bath salts” use: a case series.
        Ann Emerg Med. 2013; 61: 480-483
        • Regunath H.
        • Ariyamuthu V.K.
        • Dalal P.
        • Misra M.
        Bath salt intoxication causing acute kidney injury requiring hemodialysis.
        Hemodial Int. 2012; 16: S47-S49
        • Adebamiro A.
        • Perazella M.A.
        Recurrent acute kidney injury following bath salts intoxication.
        Am J Kidney Dis. 2012; 59: 273-275
        • Rusyniak D.E.
        Neurologic manifestations of chronic methamphetamine abuse.
        Neurol Clin. 2011; 29: 641-655
        • Burgess C.A.
        O'Donohoe, Gill M. Agony and ecstasy: a review of MDMA effects and toxicity.
        Eur Psychiatry. 2000; 15: 287-294
        • Wood D.M.
        • Davies S.
        • Greene S.L.
        • et al.
        Case series of individuals with analytically confirmed acute mephedrone toxicity.
        Clin Toxicol (Phila). 2010; 48: 924-927
        • Wood D.M.
        • Greene S.L.
        • Dargan P.I.
        Clinical pattern of toxicity associated with the novel synthetic cathinone mephedrone.
        Emerg Med J. 2011; 28: 280-282
        • Sharma T.R.
        • Iskandar J.W.
        • Ali R.
        • Shah U.R.
        Bath salts-induced delirium and brief psychotic episode in an otherwise healthy young man.
        Prim Care Companion CNS Disord. 2012; 14
        • Antonowicz J.L.
        • Metzger A.K.
        • Ramanujam S.L.
        Paranoid psychosis induced by consumption of methylenedioxypyrovalerone: two cases.
        Gen Hosp Psychiatry. 2011; 33: 640.e5-640.e6
        • Penders T.M.
        • Gestring R.
        Hallucinatory delirium following use of MDPV: “bath salts.”.
        Gen Hosp Psychiatry. 2011; 33: 525-526
        • Goshgarian A.M.
        • Benford D.M.
        • Caplan J.P.
        Bath salt abuse: neuropsychiatric effects of cathinone derivatives.
        Psychosomatics. 2011; 52: 593-594
        • Kyle P.B.
        • Iverson R.B.
        • Gajagowni R.G.
        • Spencer L.
        Illicit bath salts: not for bathing.
        J Miss State Med Assoc. 2011; 52: 375-377
        • Boulanger-Gobeil C.
        • St-Onge M.
        • Laliberte M.
        • Auger P.L.
        Seizures and hyponatremia related to ethcathinone and methylone poisoning.
        J Med Toxicol. 2012; 8: 59-61
        • Sammler E.M.
        • Foley P.L.
        • Lauder G.D.
        • Wilson S.J.
        • Goudie A.R.
        • O'Riordan J.
        A harmless high?.
        Lancet. 2010; 376: 742
        • Fallon J.K.
        • Shah D.
        • Kicman A.T.
        • et al.
        Action of MDMA (ecstasy) and its metabolites on arginine vasopressin release.
        Ann N Y Acad Sci. 2002; 965: 399-409
        • Falgiani M.
        • Desai B.
        • Ryan M.
        “Bath salts” intoxication: a case report.
        Case Rep Emerg Med. 2012; : 976314
        • McMahon E.M.
        • Andersen D.K.
        • Feldman J.M.
        • Schanberg S.M.
        Methamphetamine-induced insulin release.
        Science. 1971; 174: 66-68
        • Banks M.L.
        • Buzard S.K.
        • Gehret C.M.
        • et al.
        Pharmacodynamic characterization of insulin on MDMA-induced thermogenesis.
        Eur J Pharmacol. 2009; 615: 257-261
        • Stratton S.J.
        • Rogers C.
        • Brickett K.
        • Gruzinski G.
        Factors associated with sudden death of individuals requiring restraint for excited delirium.
        Am J Emerg Med. 2001; 19: 187-191