Advertisement

Tracing the Lines: A Review of Viscoelastography for Emergency Medicine Clinicians

      Abstract

      Background

      Viscoelastography (VE) is an established method to identify coagulopathies in various disease processes. Clinical decisions can be made with real-time tracings and quantitative values at the bedside. Thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) have been utilized in several disease states with clinical varying success.

      Objectives

      This review will summarize the literature and provide recommendations pertaining to major disease processes where VE may be beneficial, including trauma, anticoagulation reversal, liver disease, acute ischemic stroke, and acquired brain injuries.

      Discussion

      VE has a role in many emergency medicine patients encountered by clinicians. Reduced mortality, decreased blood product utilization, and prognostication ability makes VE an intriguing tool that can be utilized by providers to improve patient care.

      Conclusion

      This review serves as a way for emergency medicine clinicians to utilize VE in their practice and provides an insightful literature overview.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Bolliger D.
        • Gorlinger K.
        • Tanaka K.A.
        Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution.
        Anesthesiology. 2010; 113: 1205-1219
        • Chen A.
        • Teruya J.
        Global hemostasis testing thromboelastography: old technology, new applications.
        Clin Lab Med. 2009; 29: 391-407
        • Da Luz L.T.
        • Nascimento B.
        • Shankarakutty A.K.
        • et al.
        Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review.
        Crit Care. 2014; 18: 518
        • Elliott A.
        • Wetzel J.
        • Roper T.
        • et al.
        Thromboelastography in patients with acute ischemic stroke.
        Int J Stroke. 2015; 10: 194-201
        • Gilbert B.W.
        • Huffman J.B.
        Time to stop looking at alteplase for stroke through a prism.
        J Pharm Pract. 2020; 33: 127-128
        • Hand P.J.
        • Kwan J.
        • Lindley R.I.
        • et al.
        Distinguishing between stroke and mimic at the bedside: the brain attack study.
        Stroke. 2006; 37: 769-775
        • Shi Z.
        • Zheng W.C.
        • Fu X.L.
        • Fang X.W.
        • Xia P.S.
        • Yuan W.J.
        Hypercoagulation on thromboelastography predicts early neurological deterioration in patients with acute ischemic stroke.
        Cerebrovasc Dis. 2018; 46: 125-131
        • Bliden K.P.
        • Raviv G.
        • Tantry U.S.
        • et al.
        "Blueprinting" thrombogenicity and antithrombotic drug response at the bedside in patients presenting emergently with symptoms of acute stroke.
        J Thromb Thrombolysis. 2019; 47: 192-199
        • McDonald M.M.
        • Almaghrabi T.S.
        • Saenz D.M.
        • et al.
        Dual antiplatelet therapy is associated with coagulopathy detectable by thrombelastography in acute stroke.
        J Intensive Care Med. 2020; 35: 68-73
        • McDonald M.M.
        • Archeval-Lao J.M.
        • Cai C.
        • et al.
        Iodinated contrast does not alter clotting dynamics in acute ischemic stroke as measured by thromboelastography.
        Stroke. 2014; 45: 462-466
        • McDonald M.M.
        • Wetzel J.
        • Fraser S.
        • et al.
        Thrombelastography does not predict clinical response to rtPA for acute ischemic stroke.
        J Thromb Thrombolysis. 2016; 41: 505-510
        • Yao X.
        • Dong Q.
        • Song Y.
        • et al.
        Thrombelastography maximal clot strength could predict one-year functional outcome in patients with ischemic stroke.
        Cerebrovasc Dis. 2014; 38: 182-190
        • Ramchand P.
        • Nyirjesy S.
        • Frangos S.
        • et al.
        Thromboelastography parameter predicts outcome after subarachnoid hemorrhage: an exploratory analysis.
        World Neurosurg. 2016; 96: 215-221
        • Miao W.
        • Zhao K.
        • Deng W.
        • et al.
        Coagulation factor hyperfunction after subarachnoid hemorrhage induces deep venous thrombosis.
        World Neurosurg. 2018; 110: e46-e52
        • Vahtera A.S.
        • Junttila E.K.
        • Jalkanen L.V.
        • et al.
        Activation of blood coagulation after aneurysmal subarachnoid hemorrhage: a prospective observational trial of rotational thromboelastometry.
        World Neurosurg. 2019; 122: e334-e341
        • Frontera J.A.
        • Provencio J.J.
        • Sehba F.A.
        • et al.
        The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage.
        Neurocrit Care. 2017; 26: 48-57
        • Frontera J.A.
        • Aledort L.
        • Gordon E.
        • et al.
        Early platelet activation, inflammation and acute brain injury after a subarachnoid hemorrhage: a pilot study.
        J Thromb Haemost. 2012; 10: 711-713
        • Liu Z.
        • Chai E.
        • Chen H.
        • et al.
        Comparison of thrombelastography (TEG) in patients with acute cerebral hemorrhage and cerebral infarction.
        Med Sci Monit. 2018; 24: 6466-6471
        • Francoeur C.L.
        • Mayer S.A.
        Management of delayed cerebral ischemia after subarachnoid hemorrhage.
        Crit Care. 2016; 20: 277
        • Nagahama Y.
        • Allan L.
        • Nakagawa D.
        • et al.
        Dual antiplatelet therapy in aneurysmal subarachnoid hemorrhage: association with reduced risk of clinical vasospasm and delayed cerebral ischemia.
        J Neurosurg. 2018; 129: 702-710
        • van den Bergh W.M.
        • Algra A.
        • Dorhout Mees S.M.
        • et al.
        Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH Study.
        Stroke. 2006; 37: 2326-2330
        • Darkwah Oppong M.
        • Gembruch O.
        • Pierscianek D.
        • et al.
        Post-treatment antiplatelet therapy reduces risk for delayed cerebral ischemia due to aneurysmal subarachnoid hemorrhage.
        Neurosurgery. 2019; 85: 827-833
        • Wu Z.
        • Liu A.F.
        • Zhou J.
        • et al.
        The safety of triple antiplatelet therapy under thromboelastography guidance in patients undergoing stenting for ischemic cerebrovascular disease.
        J Neurointerv Surg. 2019; 11: 352-356
        • Kramer A.H.
        • Fletcher J.J.
        Locally-administered intrathecal thrombolytics following aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis.
        Neurocrit Care. 2011; 14: 489-499
        • Lauridsen S.V.
        • Hvas A.M.
        • Sandgaard E.
        • et al.
        Coagulation profile after spontaneous intracerebral hemorrhage: a cohort study.
        J Stroke Cerebrovasc Dis. 2018; 27: 2951-2961
        • Kawano-Castillo J.
        • Ward E.
        • Elliott A.
        • et al.
        Thrombelastography detects possible coagulation disturbance in patients with intracerebral hemorrhage with hematoma enlargement.
        Stroke. 2014; 45: 683-688
        • Meier K.
        • Saenz D.M.
        • Torres G.L.
        • et al.
        Thrombelastography suggests hypercoagulability in patients with renal dysfunction and intracerebral hemorrhage.
        J Stroke Cerebrovasc Dis. 2018; 27: 1350-1356
        • Zhou H.
        • Chen L.
        • He H.
        Intraoperative and postoperative effects of TEG-guided platelet transfusion on antiplatelet drug-related intracerebral hemorrhage patients.
        Exp Ther Med. 2019; 17: 2263-2267
        • Stensballe J.
        • Henriksen H.H.
        • Johansson P.I.
        Early haemorrhage control and management of trauma-induced coagulopathy: the importance of goal-directed therapy.
        Curr Opin Crit Care. 2017; 23: 503-510
        • Baksaas-Aasen K.
        • Gall L.
        • Eaglestone S.
        • et al.
        iTACTIC – implementing Treatment Algorithms for the Correction of Trauma-Induced Coagulopathy: study protocol for a multicentre, randomised controlled trial.
        Trials. 2017; 18: 486
        • Stettler G.R.
        • Moore E.E.
        • Nunns G.R.
        • et al.
        Rotational thromboelastometry thresholds for patients at risk for massive transfusion.
        J Surg Res. 2018; 228: 154-159
        • Moore H.B.
        • Moore E.E.
        • Huebner B.R.
        • et al.
        Tranexamic acid is associated with increased mortality in patients with physiological fibrinolysis.
        J Surg Res. 2017; 220: 438-443
        • Shakur H.
        • Roberts I.
        • Bautista R.
        • et al.
        Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomized, placebo-controlled trial.
        Lancet. 2010; 376: 23-32
        • Morrison J.J.
        • Dubose J.J.
        • Rasmusen T.E.
        • et al.
        Military Application of Tranexamic acid in Trauma Emergency Resuscitation (MATTERS) study.
        Arch Surg. 2012; 147: 113-119
        • El-Menyar A.
        • Sathian B.
        • Asim M.
        • et al.
        Efficacy of prehospital administration of tranexamic acid in trauma patients: a meta-analysis of the randomized controlled trials.
        Am J Emerg Med. 2018; 36: 1079-1087
        • Kane I.
        • Ong A.
        • Orozco F.R.
        • Post Z.D.
        • Austin L.S.
        • Radcliff K.E.
        Thromboelastography predictive of death in trauma patients.
        Orthop Surg. 2015; 7: 26-30
        • De Robertis E.
        • Kozek-Langenecker S.A.
        • Tufano R.
        • et al.
        Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding.
        Minerva Anestesiol. 2015; 81: 65-75
        • Gonzalez E.
        • Moore E.E.
        • Moore H.B.
        • et al.
        Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays.
        Ann Surg. 2016; 263: 1051-1059
        • Brill J.B.
        • Badiee J.
        • Zander A.L.
        • et al.
        The rate of deep vein thrombosis doubles in trauma patients with hypercoagulable thromboelastography.
        J Trauma Acute Care Surg. 2017; 83: 413-419
        • Martin G.
        • Shah D.
        • Elson N.
        • et al.
        Relationship of coagulopathy and platelet dysfunction to transfusion needs after traumatic brain injury.
        Neurocrit Care. 2018; 28: 330-337
        • Van Gent J.M.
        • Bandle J.
        • Calvo R.Y.
        • et al.
        Isolated traumatic brain injury and venous thromboembolism.
        J Trauma Acute Care Surg. 2014; 77: 238-242
        • Folkerson L.E.
        • Sloan D.
        • Cotton B.A.
        • Holcomb J.B.
        • Tomasek J.S.
        • Wade C.E.
        Predicting progressive hemorrhagic injury from isolated traumatic brain injury and coagulation.
        Surgery. 2015; 158: 655-661
        • Tripodi A.
        • Mannucci P.M.
        The coagulopathy of chronic liver disease.
        N Engl J Med. 2011; 365: 147-156
        • Hugenholtz G.C.G.
        • Lisman T.
        • Stravitz R.T.
        Thromboelastography does not predict outcome in different etiologies of cirrhosis.
        Res Pract Thromb Haemost. 2017; 1: 275-285
        • Potze W.
        • Siddiqui M.S.
        • Boyett S.L.
        • et al.
        Preserved hemostatic status in patients with non-alcoholic fatty liver disease.
        J Hepatol. 2016; 65: 980-987
        • Hawkins R.B.
        • Raymond S.L.
        • Hartjes T.
        • et al.
        Review: the perioperative use of thromboelastography for liver transplant patients.
        Transplant Proc. 2018; 50: 3552-3558
        • Kumar M.
        • Ahmad J.
        • Maiwall R.
        • et al.
        Thromboelastography-guided blood component use in patients with cirrhosis with nonvariceal bleeding: a randomized controlled trial.
        Hepatology. 2020; 71: 235-246
        • Rout G.
        • Shalimar G.D.
        • et al.
        Thromboelastography-guided blood product transfusion in cirrhosis patients with variceal bleeding: a randomized controlled trial.
        J Clin Gastroenterol. 2020; 54: 255-262
        • Chau T.N.
        • Chan Y.W.
        • Patch D.
        • et al.
        Thrombelastographic changes and early rebleeding in cirrhotic patients with variceal bleeding.
        Gut. 1998; 43: 267-271
        • Vieira da Rocha E.C.
        • D'Amico E.A.
        • Caldwell S.H.
        • et al.
        A prospective study of conventional and expanded coagulation indices in predicting ulcer bleeding after variceal band ligation.
        Clin Gastroenterol Hepatol. 2009; 7: 988-993
        • Spiezia L.
        • Mazza A.
        • Pelizzaro E.
        • et al.
        Thromboelastometry-guided therapy of massive gastrointestinal bleeding in a 12-year old boy with severe Graft-vs.-Host disease.
        Blood Transfus. 2015; 13: 320-323
        • Bianchini M.
        • Cavina M.
        • Boarino V.
        • et al.
        Massive GI bleeding due to accidental ASA inhalation.
        Platelets. 2010; 21: 67-69
        • Nanchal R.
        • Subramanian R.
        • Karvellas C.J.
        • et al.
        Guidelines for the Management of Adult Acute and Acute-on-Chronic Liver Failure in the ICU: Cardiovascular, Endocrine, Hematologic, Pulmonary and Renal Considerations: executive summary.
        Crit Care Med. 2020; 48: 415-419
        • Adcock D.
        • Gosselin R.
        Direct oral anticoagulants in the laboratory: 2015 review.
        Thromb Res. 2015; 136: 7-12
        • Dias J.
        • Norem K.
        • Doorneweerd D.
        • et al.
        Use of thromboelastography (TEG) for detection of new oral anticoagulants.
        Arch Pathol Lab Med. 2015; 139: 665-673
        • Gilbert B.W.
        • Reeder J.A.
        • Alkhalifah M.A.
        • et al.
        Throwing it in reverse: an update on reversal of oral factor Xa inhibitors.
        Am J Emerg Med. 2019; 37: 1978-1980
        • Dias J.D.
        • Lopez-Espina C.G.
        • Ippolito J.
        • et al.
        Rapid point-of-care detection and classification of direct-acting oral anticoagulants with the TEG 6s: implications for trauma and acute care surgery.
        J Trauma Acute Care Surg. 2019; 87: 364-370
        • Gilbert B.W.
        • Adams T.R.
        • Reynolds T.R.
        • et al.
        Utilization of thromboelastography and a low molecular weight heparin anti-Xa assay for guidance in apixaban reversal: a case report.
        Am J Emerg Med. 2019; 37: 1991.e1-1991.e3
        • Kobayashi L.M.
        • Brito A.
        • Barmparas G.
        • et al.
        Laboratory measures of coagulation among trauma patients on NOAs: results of the AAST-MIT.
        Trauma Surg Acute Care Open. 2018; 3: e000231
        • Furay E.J.
        • Daley M.J.
        • Satarasinghe P.
        • et al.
        Desmopressin is a transfusion sparing option to reverse platelet dysfunction in patients with severe traumatic brain injury.
        J Trauma Acute Care Surg. 2020; 88: 80-86
        • Schmidt D.E.
        • Holmström M.
        • Majeed A.
        • et al.
        Detection of elevated INR by thromboelastometry and thromboelastography in warfarin treated patients and healthy controls.
        Thromb Res. 2015; 135: 1007-1011
        • Blasi A.
        • Calvo A.
        • Prado V.
        • et al.
        Coagulation failure in patients with acute-on-chronic liver failure and decompensated cirrhosis: beyond the international normalized ratio.
        Hepatology. 2018; 68: 2325-2337
        • Lloyd-Donald P.
        • Vasudevan A.
        • Angus P.
        • et al.
        Coagulation in acutely ill patients with severe chronic liver disease: Insights from thromboelastography.
        J Crit Care. 2017; 38: 215-224
        • Stravitz R.T.
        • Lisman T.
        • Luketic V.A.
        • et al.
        Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography.
        J Hepatol. 2012; 56: 129-136
        • Premkumar M.
        • Saxena P.
        • Rangegowda D.
        • et al.
        Coagulation failure is associated with bleeding events and clinical outcome during systemic inflammatory response and sepsis in acute-on-chronic liver failure: an observational cohort study.
        Liver Int. 2019; 39: 694-704
        • Kleinegris M.C.
        • Bos M.H.
        • Roest M.
        • et al.
        Cirrhosis patients have a coagulopathy that is associated with decreased clot formation capacity.
        J Thromb Haemost. 2014; 12: 1647-1657
        • Lentschener C.
        • Flaujac C.
        • Ibrahim F.
        • et al.
        Assessment of haemostasis in patients with cirrhosis: relevance of the ROTEM tests?: a prospective, cross-sectional study.
        Eur J Anaesthesiol. 2016; 33: 126-133
        • Montalto P.
        • Vlachogiannakos J.
        • Cox D.J.
        • et al.
        Bacterial infection in cirrhosis impairs coagulation by a heparin effect: a prospective study.
        J Hepatol. 2002; 37: 463-470
        • Tanner B.
        • Lu S.
        • Zervoudakis G.
        • et al.
        Coagulation profile following liver resection: does liver cirrhosis affect thromboelastography?.
        Am J Surg. 2018; 215: 406-409
        • Vucelic D.
        • Jesic R.
        • Jovicic S.
        • et al.
        Comparison of standard fibrinogen measurement methods with fibrin clot firmness assessed by thromboelastometry in patients with cirrhosis.
        Thromb Res. 2015; 135: 1124-1130
        • Papatheodoridis G.V.
        • Patch D.
        • Webster G.J.
        • et al.
        Infection and hemostasis in decompensated cirrhosis: a prospective study using thrombelastography.
        Hepatology. 1999; 29: 1085-1090
        • Pandey C.K.
        • Saluja V.
        • Gaurav K.
        • et al.
        K time & maximum amplitude of thromboelastogram predict post-central venous cannulation bleeding in patients with cirrhosis: a pilot study.
        Indian J Med Res. 2017; 145: 84-89
        • Kohli R.
        • Shingina A.
        • New S.
        • et al.
        Thromboelastography parameters are associated with cirrhosis severity.
        Dig Dis Sci. 2019; 64: 2661-2670
        • Somani V.
        • Amarapurkar D.
        • Shah A.
        Thromboelastography for assessing the risk of bleeding in patients with cirrhosis-moving closer.
        J Clin Exp Hepatol. 2017; 7: 284-289
        • Shin K.H.
        • Kim I.S.
        • Lee H.J.
        • et al.
        Thromboelastographic evaluation of coagulation in patients with liver disease.
        Ann Lab Med. 2017; 37: 204-212